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ON WATSON'S ANOVA FOR DIRECTIONS

by M.A. Stephens

Simon Fraser University

"One of the things which has impressed me in statistical work is how often
desperate approximations seem to work well”. -- Professor Geoffrey S.Watson,

Louvain, August 1989.

1. Introduction

In the summer of 1989, there was a satellite meeting of the 1.5.1. held in
Louvain, Belgium. The theme was on Statistics in the Earth Sciences, and one
session focussed on directional data and related problems. A feature of the session
was a talk by Professor G.S. Watson (Geof), and in reviewing his own contributions,
he made the comment quoted at the head of this article. The felicitous phrase
"desperate approximations" led me to reflect on one of his most remarkable
approximations, the ANOVA technique which he introduced for the analysis of
samples of directional data.

This was given in two papers in 1956 (Watson, 1956; Watson and Williams,
1956). The methodology is intuitive, straightforward to apply, and uses well-known
distributions, and it has been much used by practical workers in geology, biology,
and other areas of science ever since.

Not long after Watson's ANOVA was introduced, I was fortunate to be a
Ph.D. student under his supervision at Toronto. He introduced me to this field of
directional data analysis, which might then be said to be in its infancy, and of which
he is a pioneer. In my thesis (Stephens, 1962a), 1 produced nomograms and

approximations for some conditional tests already suggested bv Watson and
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Williams; and also examined, and continued in subsequent papers in the 1960's, the
accuracy of the ANOVA technique.

Essentially it is remarkably accurate in three dimensions, where usually the
vectors are tightly clustered, but less so in two dimensions, where often data gives
widely dispersed vectors. In my early papers some corrections were suggested for
the x2 approximations which are used in the methodology; they were designed to
keep the simplicity of the approximations. The F-statistics in the ANOVA were also
used to give approximations to:the conditional test statistics. In later work
(Stephens, 1982) a use for the techniéue, applied to p-dimensional vectors, was
suggested in a sociological context where student activity patterns were reduced to
eight-dimensional unit vectors. More usefully, in the field of directional data, a
multiway extension of Watson's ANOVA, corresponding to a nested analysis, was
also developed.

In this article, in tribute to Professor Watson, these subjects are discussed
again, with particular emphasis on the intuitive appeal and the practicality of the
ANOVA method. The basic ANOVA technique is given in Sections 2 and 3,
followed by an illustration of the multiwav ANOVA in Section 4, here applied to
directional data in three dimensions.

In Sections 5 and 6 the 2 approximations are re-examined, including some
which arise in the multiway layout, and corrections are suggested for general p-
dimensional vectors; once again the special role of p=3, data on the sphere, is
evident. Finally some remarks are made, in Section 7, on interesting connections

between Watson's ANOVA and the conditional tests mentioned above.




2. The ANOVA technique.

Watson's ANOVA is developed for one or more samples of unit vectors,
denoting directions, which are assumed to come from the von Mises distribution in
two or three (more generally, in p) dimensions. Suppose a random sample of N

unit vectors is OP;, i=1,...N with O at the centre of a circle or sphere and P; on the
circumference or surface, and suppose the vectors are drawn from a p-dimensional

von Mises distribution. Without loss of generality we can suppose the modal vector

OA to point north, and 6; is the angle between OA and OP;. Then the density per

unit area of 6 is proportional to exp(x cos 6), where x is a clustering parameter: large

x indicates that the OP; are tightly clustered around OA. In analysing a sample, the
important statistics are R = £; OP;, its length R, and the component X on OA, when

this is known or hypothesized. The likelihood ratio statistic for a test that OA is the

modal vector gives the approximate distribution

)
2K(R-X) ~ X1 M

This should be good for all x, if N is large enough.

For large x, when the 6; will be small, Watson showed that, in p dimensions,

o
2k(N-X) ~ XN(p-1) (2)

and suggested

2
2K(N-R) ~ X(n-1)(p-1) - (3)




From this it was a short step to the analogy with the analysis of variance:
2k(N-X) = 2k(N-R) + 2x(R-X) (4)

with approximate distributions

2 2 2
ANy = X(N-Dr + Xp- (5)

where here and henceforth we write r for p-1. If one were analysing s samples, the

corresponding identity is, using R;, X;, N; for sample i, and with IN; =N, and
LiRi=R;

2k(N-R) = 2k(N1-R1) + 2k(N3-R3)... + 2k(R1+R2+...+Rs - R) (6)

with approximate distributions

2 2 2 2
LN-Dr T A(Ny-Dr T XN2-Dr T K(s-1)r (7)
3 Exact and approximate tests.

Many useful techniques flow from equations (1) to (7). Firstly, tests and
confidence intervals for k can be based on (2) and (3). Secondly, the ANOVA
analogy would imply that the last term in (4) and (6) is independent of the previous

terms on the right-hand side; thus, from (4), we have




R-
(N-D g ~ Fran-Dr 8

Equation (8) is used to give a test that OA is a given unit vector g; first one

finds R, which is the MLE of the modal vector, and then its component X on g; then

(N-1)(R-X)/(N-R) is referred to the F distribution in (8).
For s samples, (6) gives a test that they all have the same modal vector, based

now on Ry + R2 +...+ Rs - R =dj; the appropriate test becomes

(N-s)(R1+R2+...4+R¢-R)
-DIN-(Ri+Ra+..+R9)] ~ Fls-Dr(N-s)r ©)

We note here the intuitive appeal of the tests, remarked in the introduction. For
one sample, if OA is the correct modal vector, one expects R to point nearly along
OA, and so R and X will be similar in size: the ANOVA test is based on the statistic

R-X. If several populations all have the same (unknown) modal vector, one would
expect all the resultants Ry, R3,...Rs to point roughly in the same direction, that of

the overall resultant R, obtained by pooling all samples into one large sample: thus

for four samples, sav, the picture should look like Figure 1.

Ra

Fig. 1

Then the sum of the lengths of the R; will be not much more than R, the length of

K; the test statistic in ANOVA depends on the difference R} + Ra + ..+ Rs - R.




6

We now consider the %2 approximations for N-X and N-R. For p=3, dataon a
sphere, the expressions for the distributions of X and R can be written in exact, if
clumsy, closed forms, and with the help of computers (slightly younger than
directional data) exact percentage points for R and X could be found. Tables of
points have been published and also tables for multisample tests (Stephens, 1967,
1969b). In the present context, the important conclusion from this work is that, for
3-dimensional vectors, Watson's approximations (2) and (3) are very accurate, and
these lead to accurate tests based on the F-distributions (8) and (9), provided x is
greater than about 5; in the main application at that time, to paleomagnetism
studies in geology, x is usually much greater than 5. Thus the end result of this
work was entirely self-defeating - it showed my tables to be unnecessary, at least for
the application then intended! Furthermore, the simplicity of tests (8) and (9) was
much appreciated by practical statisticians, who, of course, are at home with x2 and
F; and in particular (9) makes unnecessary extensive tables which would otherwise

have to be produced for various values of s, and combinations of Ny, Nj,..., Ns.

4. A _multiway layout

Watson's ANOVA can be extended to a multiway layvout (Stephens, 1982) .
This will be illustrated with an example involving directional data in 3 dimensions.
Suppose the sets of unit vectors, with end-points on the unit sphere, are divided

into a two-way layout, with I rows and | columns, and let cell (i,j) be in the i-th row
and j-th column. Let Njj be the number of vectors in cell (i,j) with R;j, length Rjj,

being the resultant of these vectors. Let R; be the resultant, of length R;, of all

vectors in row i, and similarly let R.j, length R.;, be the resultant of all vectors in -

column
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j. Finally suppose N is the total number of vectors, N = Z; Njj, and let R.., be the

resultant of all the vectors. As before, write r=p-1. We now write the following

identity:

J ] ]
2k(N-R.) =2x ¥ (N1j-Rq1j) + 2x ¥ (N2j-R2j) +...+ 2x ¥ (N[j-Rp))
! :

/! 12 [
+ 2K LZ le-Rl.] + ..+ 2x ( )y RIj-RI'J + 2K ( > R,"-R__);
i=1 ]=—’l l=1

collecting terms, we have

I j
2x(N-R ) = 2K I

/ ]
(N,']'-R,']') + 2K ( 3 R]j-RL] +..+ 2K [ p R]j-R[_)
i=1 j=1

j=1

j=1
I

+ ZK(Z R,‘_-R“) (10)
i=1

with corresponding distributions, for large x:

2 2 2 2
X(N-Dr = X(N-IDr * X(J-1)r F Xd-Dr

The terms may be arranged in a variance component table as in Table 1. A final
column, 'mean component’, may be added, giving the value of the variance
component divided by its degrees of freedom. In the table, the factor 2k has been

omitted in the formulas under "value". To test the null hypothesis Hq: that there is

no difference between rows, we calculate the quotient




I
(N-I])( z Ri.'R..J
i=1

I ]
(I-1) [N- > X Rir)
i=1 j=1 '/

(11)

Z1=

which, on Hyg, has an F distribution with (I-1)r and (N-I])r degrees of freedom. The

null hypothesis is rejected for a significantly large value of Z1. Similarly, to test the

Table 1. Two-way analysis of variance for resultant vectors.

. Degrees
Variance component Value of freedom
I
Between rows SRi-R. (I-Dr
i=1
/
Between cols within row 1 S Ryjj- R (J-Dr
=1
[
Between cols. withinrow I I Rj-R;. (J-Dr
=1
rj
Within groups N-3X XRj (N-IPr
=1 j=1

Total N-R (N-1Dr
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null hypothesis Hg: there is no difference between columns within row i, the

quotient |
(N-Il)(Z Rij.’Ri.)
Zy= = (12)
Ji-D [N- DIED) Rij)
i=1 j=1

is calculated, and compared with the F distribution with (J-1)r and (N-IJ)r degrees of
freedom. The table thus allows an analysis of the type usually called a nested
analysis of variance, and can be adapted to situations where the number of columns
varies with the row (Stephens, 1982). Fig. 2 shows the way the resultants are

subdivided.

Fig. 2

Example. The data to hand consists of two samples of coal-cleat attitudes, kindly

supplied by Professor Richard Alldredge of Washington State University,
Department of Agriculture, and in turn taken from Jeran and Mashey (1970). The
two samples, of sizes 69 and 55, will be put into 2 rows of a 2 way layout, and to

illustrate the methodology, they have each been divided into 4 sub-groups, where
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the vectors appeared to be clustered, and these are placed in the columns. The table

of Njj and resultant lengths is in Table 2; subscripts inside cells are omitted.

Columns
1 2 3 4
N 19 19 16 15
Row 1
R 18.93 18.87 5.93 14.95
N 21 20 7 7
Row 2
R 20.89 19.92 6.97 6.97
The overall resultant of all 124 vectors has length 84.15 .
These results lead to an ANOVA table as follows.
Between rows: 38.45 2 Z1 = 8907
Between columns 0.39 6 Z> =30.1
within row 1
Between columns 0.52 6 Z> = 40.06

within row 2

Within groups 050 23

2

Total

69
R1, =68.37

Ry =54.22

The test statistic Z1, to test for differences between rows, would be compared with

F2 232 and the test statistics Zp with Fg 232; clearly there is a difference between the

two sites where samples were taken (rows) and also between columns, as one might

expect since the subgroups are chosen to be apparent clusters in the data. In this

analysis we can expect the F-tests to be accurate because the x values in each cell are

very large, indicated by how close R is to N in each cell.
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5 Tw imensions.

In applications to directional problems in two dimensions - for example, in
examining flights of birds, or movement of insects reacting to light - the vectors are
typically more widespread, indicating a lower value of x. The exact distributions of
X and of R are intractable; but moments can be found, and accurate percentage
points for these statistics were given by fitting Pearson curves using these moments.
(Stephens, 1969a). These showed that the 2 approximations (2) and (3) were not as
accurate in two dimensions as in three. It seemed a good idea to keep the x2 form of

the approximation, and this could be done by changing « to y given by

1_
‘\{-

3

+ 8K2 (13)

Al

This approximation was found as a compromise between two methods (Stephens,
1969a) and works well for x as low as 2. (Of course, when x becomes very small, it
might be preferred first to test for randomness (x=0) of the given vectors, and except

for verv large samples this will often not be rejected.)

6. Higher dimensions.

In Stephens (1982) an application of the von Mises distribution was made, to
the analysis of data in the form of proportions of a continuum such as time, weight,
volume, or income. The particular application was the following. Suppose
y; = proportion of a student's day spent in activity i, i=1,...p, and let x; = Vyi Clearly

the x; are components of a vector of length 1, in p dimensions. In the application,
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groups of student activity vectors were modelled as samples from 8-dimensional
von Mises populations. In my thesis, and later in two Technical Repcrts (Stephens,
1962a, 1962d, 1980) distribution theory was given for the von Mises distribution in p
dimensions. In particular, the %2 approximations (2) and (3) hold good for large x, as
before. The student activity patterns were therefore analysed using the multiway
layout given above. It was also assumed that if the approximation worked better for
p=3 than it did for p=2, it would surely work even better for higher p. This piece of
induction turned out to be rather rash: Ulrich (1984) has since shown that it takes
very high x to work well in higher dimensions. (This would not invalidate the
analysis in Stephens (1982), since vectors of the type discussed will certainly come
from populations with very high x). It seems fascinating that the sphere should be
the special case where the approximations are excellent, s0 we now again examine
the 2 approximations to see if they can be improved for p > 3. As before, we try to

find ¥y so that

rd 2 2
2v(N-X) ~ AN(p-1) s 2¥(N-R) ~ Z(N-D(p-1

The method used will be to equate the mean of 2y(N-X) to N(p-1), since this mean
can be found exactly. In p dimensions, E(X/N) = Ins2 (K)/Iq/z(K), where I, (x) is the
Bessel function of the second kind of order v, and g4 =p - 2. Thus the new

approximation gives

1 2 7 IpnAx)
¥ T p-1 (1 ) Iq/Z(K)) (14)

An asymptotic expansion exists for Iy(x);

1() = ex 1 4v2-1  (4v2-1)(4v2-9)  (1v2-1)(4v2-9) (4v2-25)
VK-\/EE " T8k T 218k 31(8x)3
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A little algebra will then give

3 p3  pRAERET)  (p-3)pdp-9)
B b s LT« PR 4 0nc) (15)

2|
Al

We see at once that no correction of higher order than 1/x is available for the

special case p=3. This can be verified by direct examination of the mean E(X/N)

1 .
which reduces, for p=3, to coth x - 1, and 1/y then equals 1/x + a term which tends to

zero faster than any power of x (Stephens, 1969a). Further, for p=2, the second order
correction to 1/y1is positive, but for p < 4 it is negative. Watson (1988) has himself
returned to these questions, and has shown that, as p — o, x must be proportional to
\/_p— in order for the approximate distributions to take hold. Studies are underway to
use these results to provide %2 approximations for p 2 4, and also to adapt the F-
tests to give greater accuracy for small x. Other problems of practical interest
include investigating the accuracy of the multiway procedures for p 2 4, and also the
important question of the robustness of all the ANOVA techniques when the

samples show different x-values, although all are large.

7. Conditional tests and ANOVA.

We conclude by investigating the connection between Watson's ANOVA and
conditional tests for the modal vector which were introduced by Watson and
Williams (1956). These are based on the fact that, for any dimension, the
distribution of R, given X, is independent of x. A test for the modal vector, for
example, is then based on whether R > R, where Ry is the critical value of R at -

level a, for the value of X obtained by projecting R on the hypothesized modal
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vector. These tests may be compared with the ANOVA tests for large x ; we shall
concentrate on the case p = 3, for which, again, closed form expressions can be found
for the distribution of R, given X . (Watson and Williams, 1956). These authors
noted that the conditional test, when X, and therefore R, are close to N, gives
almost exactly the same result as the unconditional F-test (8); and both were
equivalent to an expression for the confidence interval for the modal vector given
by Fisher (1953), where the nuisance parameter x is eliminated fiducially. The exact
expressions for P(R > RqlX) were used to obtain Ry for given X (and N) and

significance levels o = 0.10, 0.05, and 0.01, and were published in the form of

nomograms (Stephens, 1962¢c, reproduced in Biometrika Tables for Statisticians, Vol.
2, 1972, and in Mardia, 1972); the F-approximation was again used to provide an
approximation for Rq . In fact, when X is greater than N-2, the exact value of Rgq,
for the conditional test, is given by solving Watson's unconditional test statistic set

equal to the critical value of F, and holding X constant: that is

Ro-X _ F22N-2(a)
N-Rq =~  N-1

(16)

gives RqlX. For smaller X , but reasonably large, the equality becomes a good
approximation. The similar equality on the circle is never exact, but the idea of
using the F-ratio in this way to obtain Rq, was the basis of a test given in Stephens
(1969b).

The technique expressed by (16) is not, of course, usually valid to obtain a
critical value of the conditional distribution of a statistic such as R, given X, from
the unconditional distribution of a function of both R and X . It is therefore
interesting to see why it works here. The basis is the following characterisation of
the Gamma distribution: if x and y are independent Gammas with the same scale

parameter, then y/x is independent of x + y Writing here y = 2x(R-X) and
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x = 2k(N-R), and accepting Watson's x2 and independence approximations, we
then have (R-X)/(N-R) independent of N-X, and therefore independent of X .
Then equation (16) follows. The exactness of (16) for large X on the sphere, and its
accuracy when used as an approximation for smaller X , together with the similar
results for the circle, compel us once again to appreciate the accuracy of Watson's
original 2 approximations. For workers in several fields of science, they were
successful enough to give the first techniques for the analysis of directional data --

desperate though they may have been!
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